Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 14(3)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38540790

RESUMO

Diatoms, efficient carbon capture organisms, contribute to 20% of global carbon fixation and 40% of ocean primary productivity, garnering significant attention to their growth. Despite their significance, the synthesis mechanism of polyamines (PAs), especially spermidine (Spd), which are crucial for growth in various organisms, remains unexplored in diatoms. This study reveals the vital role of Spd, synthesized through the spermidine synthase (SDS)-based pathway, in the growth of the diatom Phaeodactylum tricornutum. PtSDS1 and PtSDS2 in the P. tricornutum genome were confirmed as SDS enzymes through enzyme-substrate selectivity assays. Their distinct activities are governed primarily by the Y79 active site. Overexpression of a singular gene revealed that PtSDS1, PtSDS2, and PtSAMDC from the SDS-based synthesis pathway are all situated in the cytoplasm, with no significant impact on PA content or diatom growth. Co-overexpression of PtSDS1 and PtSAMDC proved essential for elevating Spd levels, indicating multifactorial regulation. Elevated Spd content promotes diatom growth, providing a foundation for exploring PA functions and regulation in diatoms.


Assuntos
Diatomáceas , Diatomáceas/genética , Diatomáceas/metabolismo , Espermidina Sintase/genética , Espermidina Sintase/metabolismo , Poliaminas/metabolismo , Vias Biossintéticas , Genoma
2.
J Hazard Mater ; 429: 128337, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35121295

RESUMO

Carbon-based nanomaterials have great potential in medical applications, especially in the treatment of infectious diseases and even tumors. However, to safely execute the application of carbon nanomaterials in human treatments, conducting safety assessments and establishing suitable evaluation criteria are necessary. In this study, lysine-carbonized nanogels (Lys-CNGs) that display antibacterial and antiviral abilities were employed in a comprehensive evaluation of their toxicity profiles through assessments in different animal models and growth stages. It was observed that zebrafish at the embryo and eleutheroembryo stages experienced significant toxic effects at a concentration of 15-fold the recommended dosage (0.5 ppm), whereas adult zebrafish following long-term consumption of fodder containing Lys-CNGs presented no adverse effects. Further microbiota analysis indicated that Lys-CNGs did not cause significant changes in the composition of the intestinal bacteria. In contrast, in the toxicity assessments with mammalian animal models, the Lys-CNGs showed no adverse effects, such as weight loss, dermal irritation, and skin sensitization responses in rabbits and guinea pigs, even at a high dose of 2000 mg/kg body weight. Our study revealed that Lys-CNGs have different toxic effects on different growth stages of zebrafish. Researchers in this field should carefully consider the implications of these toxicity profiles during the development of therapeutic carbon-based nanomaterials and for comparison of studies.


Assuntos
Carbono , Peixe-Zebra , Animais , Cobaias , Modelos Animais , Nanogéis , Coelhos , Testes de Toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...